If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+3x=41
We move all terms to the left:
12x^2+3x-(41)=0
a = 12; b = 3; c = -41;
Δ = b2-4ac
Δ = 32-4·12·(-41)
Δ = 1977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1977}}{2*12}=\frac{-3-\sqrt{1977}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1977}}{2*12}=\frac{-3+\sqrt{1977}}{24} $
| (2t+2)/4=3= | | 2^n=36 | | 5n(-)42=12n | | x=-3x²+24x+36 | | x*2x*3x=384 | | (x+2)³=65 | | x=0.5x+(6/x) | | -16x^2+96x-64=0 | | 7x+13=90,x | | 96x-16x^2-64=0 | | x=0.5(x+(12/x)) | | x=0.5(x+(12/x) | | 4–4h=12 | | (7x+24)(7x−26)=180 | | 5x×3x×2x=240 | | 5b=20+30 | | 208=15+15/33d | | 5*(2+(-3y)+(-9y)=4(3+(-2y) | | x^2-5x+7-√-1=0 | | 18=2x√34 | | 2x+5=+10 | | (9y+1)=(y+17) | | x=0.5x+64 | | 67+2y+5=90 | | (x)=16x^2-2x-5 | | 2(x-8)=3x+6 | | 180=15x+5+11x-7 | | 13x+64=180 | | 2.09x=33.44 | | 19x+1=16x+22 | | 42x=41x+3 | | 2(1+7r)-6(2r-10)=2r+9+5 |